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Abstract

A ¯exible material, such as a woven or braided fabric, may be tailored to form an arch when in¯ated. Such
arches have been used as the framework for transportable shelters and are analyzed in this paper. It is assumed that
the cross section of the pressurized arch is circular and that only in-plane (membrane) stresses are present. An

analytical solution for these initial stresses is given for an arbitrary arch centerline shape. Then external loads are
applied, and the additional stress resultants include bending and twisting moments. The linear thin-shell theory of
Sanders is used to formulate the governing equations, including the e�ect of the initial membrane stresses. The

material is linearly elastic, nonhomogeneous, and orthotropic. Approximate solutions are obtained using the
Rayleigh±Ritz method. In the examples, the centerline of the arch is a semi-circle, the ends are ®xed, and the
material is homogeneous and isotropic. Four loads are treated: a symmetric (`full') snow load, an asymmmetric

(`half') snow load, a wind load symmetric with respect to the plane of the arch centerline, and a distributed load
acting sideways. The resulting de¯ections are computed and plotted. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

A pressurized arch made of a highly ¯exible material (e.g., a fabric) is analyzed. Such arches have
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been used to support tent-like structures. Some examples of these structures are depicted by Re�ell
(1967), Price et al. (1971), Dent (1972), Otto (1973), Kronenburg (1995), Kronenburg (1996), Hampel et
al. (1996), Galas and Bacskai (1998). They could act as deployable shelters for vehicles, helicopters, and
aircraft, and also may have potential use as emergency shelters during or following natural disasters.
They can be transported in modules and the arches can be in¯ated at the site.

The behavior of a single pressurized arch has been considered in several studies. Kawaguchi et al.
(1972) described experiments using loads that simulated wind pressure. Steeves (1978) tested a toroidal
tube under concentrated and uniform loading conditions, and analyzed such structures assuming linearly
elastic behavior, a circular cross section which does not deform, and a membrane state of stress.
Collapse of an in¯ated toroidal membrane subjected to a concentrated load was investigated by
Lukasiewicz and Balas (1990).

The ®nite element method using shell elements has been applied in some recent studies of these
structures. Molloy (1998) considered a pressurized arch with a parabolic shape. Snow loads and a wind
load were applied, and de¯ections, vibration frequencies, and buckling loads were determined. Mohan
and Kapania (1998a, 1998b) analyzed a circular arch and included large loads and de¯ections. Their
®rst paper treated a concentrated load at the crown of the arch, whereas the behavior under two
external pressure distributions was investigated in their second paper. Kim et al. (1998) examined the
response of a shelter supported by ten pressurized arches and subjected to symmetric and asymmetric
snow loads. Displacements and vibration frequencies were computed. Finally, Molloy et al. (1999)
considered a pair of pressurized arches leaning against each other and attached at the point of contact
near their crowns. In conjunction with these numerical studies, experimental tests were carried out on
scale models of a shelter supported by ¯exible arches (Carradine and Plaut, 1998).

In the following section, the arch is considered in its pressurized state prior to the application of
service loads. In this state, the arch is assumed to have a circular cross section, and the locus of the
centers of the cross sections (the centerline) is assumed to be known (and is not necessarily circular).
The associated `initial stresses' due to the internal pressure are assumed to comprise a membrane state.
The equilibrium equations have an analytical solution for the in-plane stress resultants.

In Section 3, the service loads (e.g., snow or wind) are applied to the pressurized arch. The resulting
displacements are assumed to be small and a linear analysis is carried out. Both membrane and bending
stresses are included, and Sanders' linear thin-shell theory is utilized to formulate the governing
equations. The material is assumed to be linearly elastic, and may be nonhomogeneous and orthotropic.

The solution procedure is described in Section 4. It involves the Rayleigh±Ritz method, based on
stationarity of the total potential with respect to kinematically admissible variations in the
displacements. Numerical results are obtained in Section 5 for symmetric and asymmetric snow loads, a
wind load, and a sideways load. Concluding remarks are presented in Section 6.

2. Pressurized state

A side view of the in¯ated arch is shown in Fig. 1(a). The arc length along the centerline (i.e., the
meridional coordinate) is s, with s � 0 at the crown, s � ÿs0 at the left base, and s � s0 at the right
base. Fig. 1(b) depicts the cross section, with constant radius r and with circumferential coordinate f
(where f � 0 at the top meridian). The orthogonal curvilinear coordinates s and f are principal
coordinates.

The shape of the centerline is denoted by y�x�, and the curvature k is given by
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k � ÿy 00�
1� �y 0 �2

�3=2 �1�

The LameÂ parameters Af and As and the principal radii of curvature Rf and Rs are as follows (Kraus,
1967):

Af � r, As � 1� rkcos f, Rf � r, Rs � r� 1

kcos f
�2�

Fig. 2(a) shows the in-plane stress resultants Tf, Ts, and Tfs associated with the constant internal
pressure p. The equilibrium equations in general form are

@
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Fig. 1. Geometry of arch: (a) side view; (b) section A±A.

Fig. 2. Stress resultants and loads: (a) initial in-plane stress resultants and internal pressure; (b) additional in-plane stress resultants

and service loads; (c) additional moments.
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Tf

Rf
� Ts

Rs
� p �3c�

For the case considered in this paper, with constant cross-sectional radius and with Eq. (2) being
satis®ed, the solution of Eqs. (3a±c) is given by

Tf�s, f� �
pr
�
2� rk�s�cos f

�
2
�
1� rk�s�cos f

� , Ts � pr

2
, Tfs � 0 �4�

This analytical solution is well-known for the special case of toroidal shells with circular cross sections,
i.e., when k is constant (e.g., Zingoni, 1997). As seen here, it is also valid when k is a function of the
meridional coordinate s.

3. Service loads

Distributed loads (e.g., snow or wind loads) are applied to the pressurized arch, and the displacements
and additional stresses are to be determined. The arch material is assumed to be linearly elastic,
nonhomogeneous (or homogeneous), and orthotropic (or isotropic). A linear analysis is assumed to be
su�cient, i.e., the displacements under the service loads are assumed to be small. The arch is treated as
a thin shell and Sanders' theory (sometimes called Sanders±Koiter theory) is used (Sanders, 1959;
Koiter, 1960; Budiansky and Radkowski, 1963; Budiansky and Sanders, 1963; Kraus, 1967; Zhang and
Redekop, 1992; Zingoni, 1997).

3.1. Equilibrium

The additional in-plane stress resultants are shown in Fig. 2(b) and the bending and twisting moment
resultants (i.e., moments per unit length) are drawn in Fig. 2(c). The transverse shear resultants are not
depicted. The surface traction forces per unit area are qf, qs, and qn in the f, s, and normal directions,
respectively, with qn positive if pointing outward, as illustrated in Fig. 2(b).

The modi®ed membrane shear resultant and modi®ed twisting moment resultant are de®ned as

�Nfs � 1

2

ÿ
Nfs �Nsf

�
, �Mfs � 1

2

ÿ
Mfs �Msf

� �5�

respectively. After elimination of the transverse shear resultants, the resulting equilibrium equations
(including the initial stress resultants Tf, Ts, and Tfs� are as follows:
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In Eqs. (6a±c), bf and bs are rotations and will be de®ned in Eq. (8).

3.2. Strain±displacement relationships

In the f and s directions, respectively, the extensional strains are ef and es, and the bending strains
(i.e., changes in curvature) are kf and ks: The in-plane shearing strain is gfs and the twisting strains are
kfs and ksf: The modi®ed twisting strain is de®ned as

�kfs � 1

2
�kfs � ksf� �7�

The mid-surface displacements in the f, s, and normal directions, respectively, are denoted by uf, us,
and w, with w positive if outward. Then the rotations bf and bs are de®ned as

bf �
uf

Rf
ÿ 1

Af

@w

@f
, bs �
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ÿ 1

As

@w

@s
�8�

The strain±displacement relationships are as follows:
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3.3. Constitutive law

In the f and s directions, respectively, the moduli of elasticity are denoted by Ef and Es, and the
values of Poisson's ratio are nf and ns: The in-plane shear modulus is Gfs and the thickness of the shell
is h.

The stress±strain relationships are assumed to be (e.g., Reddy, 1984; Jones, 1999)

Nf � A11�ef � nses �, Ns � A22�es � nfef �, �Nfs � A66gfs

Mf � D11�kf � nsks �, Ms � D22�ks � nfkf�, �Mfs � 2D66 �kfs �10�
where

A11 � Efh

1ÿ nfns
, A22 � Esh

1ÿ nfns
, A66 � Gfsh

D11 � Efh
3

12
ÿ
1ÿ nfns

� , D22 � Esh
3

12
ÿ
1ÿ nfns

� , D66 � Gfsh
3

12
�11�

For later use, the following quantities are also de®ned:

A12 � A11ns � A22nf, D12 � D11ns � D22nf �12�

4. Solution procedure

Approximate solutions will be obtained using the Rayleigh±Ritz method. The elastic strain energy UE,
potential UI of the initial stresses, and potential UL of the service loads are as follows:

UE � 1

2

�s0
ÿs0

�2p
0

�
A11e2f � 2A12efes � A22e2s � A66g2fs

�
AfAs df ds

�1
2

�s0
ÿs0

�2p
0

�
D11k2f � 2D12kfks �D22k2s � 4D66 �k2fs

�
AfAs dfds �13a�
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UI � 1

2

�s0
ÿs0

�2p
0

h
Tfb
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f � 2Tfsbfbs � Tsb

2
s
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AfAs dfds �13b�
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�s0
ÿs0

�2p
0
�qfuf � qsus � qnw�AfAs dfds �13c�

The total potential is U � UE �UI �UL:
Kinematically admissible functions fi�s, f� are chosen for the displacements, which are written in the

form

uf�s, f� �
Xn1
i�1

difi�s, f�, us�s, f� �
Xn2

i�n1�1
difi�s, f�, w�s, f� �

Xn3
i�n2�1

difi�s, f� �14�

These expressions are used in the total potential U, and the ®rst partial derivative of U with respect to
each of the coe�cients di is set equal to zero. The resulting set of linear equations is solved for the
coe�cients. The software package `Mathematica' (Wolfram, 1996) is utilized to carry out the numerical
computations in the solution procedure.

5. Numerical results

In this section the internal pressure is assumed to be p � 400 kPa. Under this pressure, the centerline
of the arch is assumed to be semi-circular (i.e., k is constant), with s0 � 20 m and hence k � p=40 mÿ1.
The cross-sectional radius is chosen to be r � 0:15 m and the thickness to be h � 2:5 mm. The material
is assumed to be homogeneous and isotropic, with Ef � Es � 7 GPa, nf � ns � 0:3, and Gfs � 2:69 GPa
in the pressurized state. At the bases, the arch is assumed to have no vertical displacement us, no radial
displacement w, and no slope @w=@s: The functions fi used in Eq. (14) will depend on the symmetry
properties of the service load under consideration.

5.1. Full snow load

In this case, a vertical load is applied with uniform intensity q per unit horizontal area, as shown in
Fig. 1(a). It is assumed that the snow will fall o� the arch if jfj > p=6 or jcj > p=6, where c is the angle
in the xy plane of the centerline tangent with the horizontal (i.e., c � yÿ �p=2�, where y is shown in
Fig. 1(a)). The load components used in Eq. (13c) are

qf � qcos2csin fcos f, qs � qsin ccos ccos f, qn � ÿqcos2ccos2f �15�
It is convenient to write the functions fi in terms of the nondimensional meridional coordinate
x � �s� 20�=40, where s is in meters, so that x � 0 when s � ÿs0 and x � 1 when s � s0 (see Fig. 1(a)).
For this case with symmetry in the load with respect to two vertical planes, the functions
sin�nf�cos�2mpx�, n � 1, 2, m � 0, 1, . . . , 4 are used for uf; cos�nf�sin�2mpx�, n � 0, 1, 2, m � 1, . . . ,4 are
used for us; and cos�nf��1ÿ cos�2mpx��, n � 0, 1, 2, m � 1, . . . ,4 are used for w. In this example and all
the following ones, the terms involving 2f turn out to have negligible coe�cients, and therefore they
will not be mentioned further. Thus the circular cross sections remain essentially circular for the
distributed loads treated here.

The dominant terms in the solution are listed in Appendix A, and the nondimensional displacements
~us and ~w along the top meridian are plotted versus x in Fig. 3, where
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~us � usp

rq
, ~w � wp

rq
�16�

Naturally, us is anti-symmetric and w is symmetric about the crown, whereas uf � 0 on the top
meridian. A side view of the resulting displaced arch is illustrated in Fig. 4, using a large value of the
load so that the shape is distinguished from the light (semi-circular) shape of the initial state. The
central region of the arch de¯ects downward and the outer regions bulge outward.

5.2. Half snow load

Now the loading is assumed to consist of the right half of the uniform load shown in Fig. 1(a).
Hence, it is symmetric with respect to f but not with respect to s. The chosen functions are
sin�f�cos�mpx�, m � 0, 1, . . . , 8 for uf; cos�nf�sin�mpx�, n � 0, 1, m � 1 , . . . , 8 for us; and
cos�f��1ÿ cos�mpx��, m � 1, . . . ,8 for w.
Some of the functions for w do not satisfy the boundary condition w � 0 at x � 1, the right base. For

this case, distributed radial springs are added at x � 1 with high sti�ness coe�cient C � 106p so that
this condition will be satis®ed approximately.

Therefore, the potential UB of the springs is given by

Fig. 3. De¯ections along top meridian for full snow load.

Fig. 4. Shape of top meridian under full snow load.
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UB � 1

2
C

�2p
0

w2�s0, f� df �17�

is included in the total potential U before the stationarity conditions are obtained.
The dominant terms are given in Appendix A, the variations of us and w along the top meridian are

shown in Fig. 5, and the side view is depicted in Fig. 6. With the downward load applied on the right of
the center, the arch has a greater outward bulge on the left side than on the right side.

5.3. Wind load

The wind is assumed to ¯ow from left to right in Fig. 1(a). The angle y is shown in the ®gure. The
normal pressure distribution from the wind is taken to be

qn � ÿ0:5rv2qk�y�cos f, ÿ p=4 < f < p=4 �18�
where r is the density of air, v is the speed of the wind, and k�y� is chosen to be the `rough' distribution
from Soare (1967), which is given by the formula

k�y� � ÿ0:258� 0:488cos y� 0:476cos 2y� 0:328cos 3y� 0:100cos 4y �19�
and is plotted in Fig. 7.

As in the previous section, the loading is symmetric with respect to f but not with respect to s, and

Fig. 5. De¯ections along top meridian for half snow load.

Fig. 6. Shape of top meridian under half snow load.
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the same functions fi are used here. The results are listed in Appendix A and are plotted in Figs. 8 and 9
for the top meridian. External pressure near the left base causes an inward de¯ection for most of the left
half of the arch in Fig. 9.

5.4. Side load

In this last example, the load is symmetric in s but not in f: It is given by qn � ÿq for ÿs0=2 < s <
s0=2 and p=4 < f < 3p=4: That is, the load acts normally in Fig. 1(a) over the top half of the arch along
the s direction and over the middle of the cross section on the front side.

The functions cos�nf�cos�2mpx� and sin�nf�cos�2mpx�, n � 0, 1, m � 0, 1, 2, 3 are used for uf;
cos�nf�sin�2mpx� and sin�nf�sin�2mpx�, n � 0 , 1, m � 1, 2, 3 are used for us; and cos�nf��1ÿ cos�2mpx��
and sin�nf��1ÿ cos�2mpx��, n � 0, 1, m � 1, 2, 3 are used for w. Numerical results are given in Appendix
A, and the horizontal displacement at the center of the front side of the arch (i.e., at f � p=2� is plotted
versus x in Fig. 10.

Fig. 7. Distribution of wind load along arch.

Fig. 8. De¯ections along top meridian for wind load.
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6. Concluding remarks

In¯atable arches made of a ¯exible fabric-like material have been considered. The starting point for
the analysis was the con®guration of the arch after it was pressurized, and the geometry was based on
this pressurized state. The cross section was assumed to be circular with a constant radius, but the
pro®le of the centerline of the cross sections was arbitrary. It was assumed that only membrane stresses
are signi®cant in this initial state. A closed-form solution for these stresses was given, which reduces to a
standard solution for the case of a toroidal shell with a circular pro®le.

Distributed loads were then applied to the arch. The linear thin-shell theory of Sanders, including
membrane and bending stresses, was utilized to formulate the governing equations. Naturally, the initial
stresses appear in the equilibrium equations. The material was assumed to be linearly elastic and was
allowed to be nonhomogeneous and orthotropic. The Rayleigh±Ritz method was applied to obtain
approximate expressions for the displacements, which then can be used to determine strains and stress
resultants.

In the numerical examples, the pro®le was assumed to be semi-circular, the bases were ®xed in the
vertical and radial directions, and the material was homogeneous and isotropic. The choice of assumed
displacement functions depended on the symmetry properties of the load. For the full snow load there

Fig. 9. Shape of top meridian under wind load.

Fig. 10. De¯ection along top meridian for side load.
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was symmetry with respect to both meridional and circumferential coordinates s and f, for the half
snow load and wind load there was symmetry only in f, and for the side load there was symmetry only
in s.

If the terms involving bending and twisting moments are deleted from the total potential, the results
are only altered slightly. Therefore, the distributed loads considered here do not lead to signi®cant
moments. However, if other loading conditions were treated, such as a concentrated load at the crown,
the moments would become important.

There is increased interest in the use of fabrics in architecture (e.g., Kronenburg, 1995, 1996; Berger,
1996; Schock, 1997). Membrane structures for use on the moon or Mars also have received some study
(Chow, 1992; Sadeh and Criswell, 1995; Kronenburg, 1996). Applications of in¯atable arches such as
considered here may increase substantially in the future.
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Appendix A

For the examples in Section 5, the dominant terms in the displacements are given here. In the case of
the full snow load,

~us � � ÿ 65:54� 2:31cos f�sin 2px� �28:23ÿ 4:95cos f�sin 4px

��2:52ÿ 1:03cos f�sin 6pxÿ 0:10cos fsin 8px �A1�

~w � �ÿ2:12� 130:86cos 2pxÿ 112:59cos 4px

ÿ15:09cos 6pxÿ 1:06cos 8px�cos f �A2�

~uf � ÿ ~wtan f �A3�
For the example with the half snow load, they are given by

~us � ÿ54:79sin px� � ÿ 33:45� 1:18cos f�sin 2px

��22:07ÿ 2:07cos f�sin 3px� �14:02ÿ 2:46cos f�sin 4px

�� ÿ 2:89� 0:81cos f�sin 5px� �1:25ÿ 0:51cos f�sin 6px

��0:48ÿ 0:26cos f�sin 7px� �0:30ÿ 0:21cos f�sin 8px �A4�

~w � �ÿ0:98� 55:07cos px� 66:77cos 2pxÿ 66:20cos 3px
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ÿ55:97cos 4px� 14:44cos 5pxÿ 7:50cos 6px

ÿ3:31cos 7pxÿ 2:32cos 8px�cos f �A5�
and Eq. (A3). For the example with the wind load,

~us � 132:17sin px� �44:74ÿ 1:58cos f�sin 2px

�� ÿ 25:90� 2:43cos f�sin 3px� � ÿ 15:26� 2:68cos f�sin 4px

�� ÿ 8:40� 2:35cos f�sin 5px� � ÿ 3:24� 1:32cos f�sin 6px

�� ÿ 1:80� 1:00cos f�sin 7px� � ÿ 0:85� 0:62cos f�sin 8px �A6�

~w � �2:21ÿ 132:17cos pxÿ 89:43cos 2px� 77:64cos 3px

�61:00cos 4px� 41:94cos 5px� 19:43cos 6px

�12:58cos 7px� 6:80cos 8px�cos f �A7�
and Eq. (A3) is satis®ed. Finally, for the example with the side load,

~us � � ÿ 0:19� 45:69sin f�sin 2px� �0:07� 8:31sin f�sin 4px

�2:59sin fsin 6px �A8�

~w � �ÿ2,155:9� 1, 941:7cos 2px� 177:2cos 4px

�37:0cos 6px�sin f �A9�

~uf � ~wcot f �A10�
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